Gradient Augmented Levelset Implementation in CPU & GPU
second-order-central.cc (Latest change: Author:Lakshman Anumolu <acrlakshman@yahoo.co.in>, 2019-06-22 16:11:09 -0500, [commit: 6586b7c])
Go to the documentation of this file.
1 // Copyright 2019 Lakshman Anumolu, Raunak Bardia.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // 1. Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // 2. Redistributions in binary form must reproduce the above copyright notice,
12 // this list of conditions and the following disclaimer in the documentation
13 // and/or other materials provided with the distribution.
14 //
15 // 3. Neither the name of the copyright holder nor the names of its contributors
16 // may be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
33 
34 template <typename T, typename T_GRID>
36 {
37 }
38 
39 template <typename T, typename T_GRID>
41 {
42 }
43 
44 template <typename T, typename T_GRID>
46  Array<T_GRID, Vec3<T>> &grad_alpha)
47 {
48  const Vec3<int> num_cells = alpha.numCells();
49  const T_GRID &grid = alpha.grid();
50  const Vec3<typename T_GRID::value_type> dx = grid.dX();
52 
53  for (int i = 0; i < num_cells[0]; ++i)
54  for (int j = 0; j < num_cells[1]; ++j)
55  for (int k = 0; k < num_cells[2]; ++k) {
56  for (int axis = 0; axis < T_GRID::dim; ++axis) {
57  typename T_GRID::value_type one_by_dx = static_cast<typename T_GRID::value_type>(1.) / dx[axis];
58 
59  grad_alpha(i, j, k)[axis] =
60  (alpha(i + axis_vectors(axis, 0), j + axis_vectors(axis, 1), k + axis_vectors(axis, 2)) -
61  alpha(i - axis_vectors(axis, 0), j - axis_vectors(axis, 1), k - axis_vectors(axis, 2))) *
62  one_by_dx * static_cast<T>(0.5);
63  }
64  }
65 }
66 
67 template <typename T, typename T_GRID>
69  Array<T_GRID, Mat3<T>> &grad_alpha)
70 {
71  const Vec3<int> num_cells = alpha.numCells();
72  const T_GRID &grid = alpha.grid();
73  const Vec3<typename T_GRID::value_type> dx = grid.dX();
75 
76  for (int i = 0; i < num_cells[0]; ++i)
77  for (int j = 0; j < num_cells[1]; ++j)
78  for (int k = 0; k < num_cells[2]; ++k) {
79  for (int axis = 0; axis < T_GRID::dim; ++axis) {
80  for (int cmpt = 0; cmpt < T_GRID::dim; ++cmpt) {
81  typename T_GRID::value_type one_by_dx = static_cast<typename T_GRID::value_type>(1.) / dx[cmpt];
82 
83  grad_alpha(i, j, k)(axis, cmpt) =
84  (alpha(i + axis_vectors(axis, 0), j + axis_vectors(axis, 1), k + axis_vectors(axis, 2))[axis] -
85  alpha(i - axis_vectors(axis, 0), j - axis_vectors(axis, 1), k - axis_vectors(axis, 2))[axis]) *
86  one_by_dx * static_cast<T>(0.5);
87  }
88  }
89  }
90 }
91 
const Vec3< int > numCells() const
Definition: array.cc:72
void compute(const Array< T_GRID, T > &alpha, Array< T_GRID, Vec3< T >> &grad_alpha)
const T_GRID & grid() const
Definition: array.cc:66